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Coral species in the genus Acropora are key ecological components of coral reefs worldwide and represent the most diverse genus of 
scleractinian corals. While key species of Indo-Pacific Acropora have annotated genomes, no annotated genome has been published for 
either of the two species of Caribbean Acropora. Here we present the first fully annotated genome of the endangered Caribbean stag-
horn coral, Acropora cervicornis. We assembled and annotated this genome using high-fidelity nanopore long-read sequencing with 
gene annotations validated with mRNA sequencing. The assembled genome size is 318 Mb, with 28,059 validated genes. 
Comparative genomic analyses with other Acropora revealed unique features in A. cervicornis, including contractions in immune path-
ways and expansions in signaling pathways. Phylogenetic analysis confirms previous findings showing that A. cervicornis diverged from 
Indo-Pacific relatives around 41 million years ago, with the closure of the western Tethys Sea, prior to the primary radiation of Indo-Pacific 
Acropora. This new A. cervicornis genome enriches our understanding of the speciose Acropora and addresses evolutionary inquiries 
concerning speciation and hybridization in this diverse clade. 
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Introduction 
The Acropora are one of the most speciose and important genera of 
reef-building scleractinian corals globally (Wallace 1999). The genus 
Acropora are divided into multiple speciose Indo-Pacific clades and a 
single depauperate Caribbean clade (Wallace 1999). The two sister 
species of Caribbean Acropora—the Staghorn coral A. cervicornis and 
Elkhorn coral A. palmata—and their hybrid—called A. prolifera 
(Vollmer and Palumbi 2002) are thought to have diverged from 
the Indo-Pacific Acropora during the late Eocene after the closure of 
the western Tethys Sea prior to the rapid diversification in the 
Indo-Pacific Acropora (Wallace 1999; Wallace and Portell 2022). To 
date, all 16 published de novo assembled and annotated Acropora gen-
omes are of Indo-Pacific species (Shinzato et al. 2011, Ying et al. 2019;  
Fuller et al. 2020; Shinzato et al. 2021; López-Nandam et al. 2023). 

Acropora, like all corals, are severely threatened by anthropogen-
ic climate change leading to elevated water temperatures that can 
cause acute bleaching and subsequently death (Hughes et al. 2018). 
The Caribbean Acropora are also experiencing a secondary range- 
wide pressure in the form of White Band Disease, which has re-
sulted in ∼95% population losses of both species Caribbean wide 
and is the direct cause of their listing on the Endangered Species 
List (Aronson and Precht 2001; National Marine Fisheries Service 
2006). Because these two species are such important foundational 
species in the Caribbean reef ecosystem, these losses have likely 
had tremendous unknown effects on higher order taxa which de-
pend on Acropora dominant reefs for survival. 

Here we present the first fully annotated genome for the endan-
gered Caribbean staghorn coral Acropora cervicornis, importantly 

representing the first Caribbean species of this diverse clade. 
This genome was assembled using a combination of long-read na-
nopore and short-read shotgun sequences and annotated and va-
lidated using mRNA sequencing. This reference genome will 
accelerate genomic research on this endangered coral and ad-
dress fundamental evolutionary questions about speciation and 
hybridization in the speciose Acroporids. 

Materials and methods 
Sample collection and sequencing 
High molecular weight genomic DNA was extracted in June 2021 
from adult tissue of the K2 genotype maintained in the Coral 
Restoration Foundation (CRF) Key Largo, Florida nursery. Three li-
braries were prepared using Oxford Nanopore Technologies (ONT) 
kit SQK-LSK112. Two libraries were not size selected while the 
third included 20+kb PippenPrep size-selection. All ONT prepared 
libraries were sequenced separately on three Minion flow cells 
(FLO-MIN112). High-quality base-calling was performed using 
Guppy v6.1.7 (ONT). 

Four additional Illumina PCR-free shotgun libraries were con-
structed using the DISCOVAR protocol to produce libraries with frag-
ments between 400 and 600 bp (Love et al. 2016). KAPA PCR-free 
library kits were leveraged with the addition of a second round of 
0.7× Agencourt AmPure XP SPRI bead cleanup post-adapter ligation. 
Libraries were multiplexed and sequenced on a single rapid-run 
HiSeq 2500 flowcell with 250 bp paired-end sequencing. 
Additionally, a library of paired 150 bp reads was prepared using 
the Illumina DNA Prep kit and sequenced as part of a NovaSeq S4 run. 
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To acquire transcriptome data, mRNA sequence data was ob-
tained for 48 individuals (including the K2 genotype) using NEBs 
unidirectional mRNA library preparations sequenced on an 
Illumina NEXTSEQ 550 platform and combined with previously 
published RNA sequencing data from 38 additional A. cervicornis 
(PRJNA222758: Libro and Vollmer 2016; PRJNA423227: Parkinson 
et al. 2018). 

Sequence quality control 
Nanopore long-reads (DNA) were quality controlled using PORECHOP 

(v 0.2.3_seqan2.1.1, https://github.com/rrwick/Porechop) to re-
move adapter sequences and then quality trimmed into longer as-
sembly reads (minimum average quality 3, minimum length 
1,000 bp) and shorter polishing reads (minimum average quality 
5, minimum length 500 bp) using NANOFILT (De Coster et al. 
2018). Illumina sequenced short-reads (DNA and RNA) were qual-
ity controlled initially using FASTP (Chen et al. 2018) to remove 
adapters and barcodes, filter low quality sequences (PHRED <  
30), trim sequences shorter than 140 bp, and PCR artifacts. 
Contaminants were removed with FASTQ_SCREEN (Wingett and 
Andrews 2018) by mapping reads against a suite of potential con-
taminant genomes (e.g. human, viral, and bacterial) as well the 13 
available genomes of Symbiodiniaceae (Supplementary Table 1) and 
removing reads which had hits to any potential contaminant 
genome. 

Genome assembly 
We estimated the genome size using a k-mer counting approach 
implemented in JELLYFISH based on the quality-controlled 
Illumina short reads (Marçais and Kingsford 2011). An initial gen-
ome assembly of the ONT sequenced reads was built using FLYE 

(Kolmogorov et al. 2019) with the nano-hq parameter setting to 
fit with the chemistry and base-calling method of the sequencing. 
After initial assembly of the raw nanopore reads, duplicated se-
quences were removed using purge_dups (Guan et al. 2020;  
Guiglielmoni et al. 2021). We polished the genome using two 
rounds of long-read polishing with RACON (Vaser et al. 2017) fol-
lowed by a round of polishing with MEDAKA v1.7.2 (ONT) and then 
two rounds of polishing with paired-end Illumina sequences using 
PILON (Walker et al. 2014). To ensure a final genome assembly of 
the highest quality and contiguity, we corrected misassembly er-
rors with short reads using MEC (Wu et al. 2020) and remove the 
mitochondrial genome and other potential genomic contami-
nants using BLOBTOOLS (Laetsch and Blaxter 2017). This was fol-
lowed by misassembly correction using the long-read data 
(Coombe et al. 2021), scaffolding (Coombe et al. 2021), gap closing 
(Xu et al. 2020), and a final round of long-read polishing with RACON 

and short-read polishing with PILON (Walker et al. 2014; Vaser et al. 
2017). Finally, all contigs shorter than 1,000 bp and/or with no 
gene annotations (see below) were removed as they did not con-
tain any BUSCOs. 

Transcriptome assembly 
A preliminary transcriptome was assembled using a genome- 
guided assembly in TRINITY (Grabherr et al. 2011). mRNA sequen-
cing reads were splice-aware mapped to the genome using GSNAP 

(Wu et al. 2016). TRINITY was used to perform a genome guided as-
sembly of the transcriptome with an assumed max intron length 
of 100,000 bp. 

Genome annotation 
Genome annotation was performed using MAKER (Cantarel et al. 
2008; Holt and Yandell 2011). Repetitive elements were identified 

and masked using REPEATMODELER (Flynn et al. 2020) and 
REPEATMASKER (Smit et al. 2015). Evidence-based gene annotation 
was performed using the assembled transcriptome and proteins 
identified in either all Acroporids in the UniProt database (The 
UniProt Consortium 2023) or the closest reference proteomes in 
UniRef from Stylophora pistillata (Voolstra et al. 2017), Pocillopora dami-
cornis (Cunning et al. 2018), Actinia tenebrosa (Surm et al. 2019), and 
Nematostella vectensis (Putnam et al. 2007). This initial round of anno-
tation was used to train the ab initio gene identification models of 
Augustus (Stanke et al. 2006), Snap (Korf 2004), and Genemark-ES 
(Lomsadze et al. 2005). After the initial round of annotation based 
solely on protein and RNA evidence, we performed four subsequent 
rounds of annotation with the results of the previous round being 
used to train the ab initio gene predictors run in the subsequent 
round of annotation. Genes were functionally annotated using 
EnTAP (Hart et al. 2020) and Interproscan (Zdobnov and Apweiler 
2001), and formatted the annotations for NCBI using GAG and 
ANNIE (Tate et al. 2014; Geib et al. 2018). 

Mitochondrial assembly 
The mitochondrial genome was assembled using the quality- 
controlled Illumina short-reads using MITOZ (Meng et al. 2019). 
Briefly, this was done by first assembling a subset of reads into ini-
tial contigs which are then identified as mitogenome sequences 
using a profile Hidden Markov Model (Wheeler and Eddy 2013;  
Xie et al. 2014; Nurk et al. 2017). Contigs were then annotated to 
find the 13 protein-coding mitochondrial genes along with 
tRNAs and rRNAs with any contigs not containing any annota-
tions removed (Birney et al. 2004; Gertz et al. 2006; Li and 
Durbin 2009; Jühling et al. 2012; Nawrocki and Eddy 2013). 
Finally, retained contigs were assembled and circularized into 
the complete mitochondrial genome and visualized (Gertz et al. 
2006; Krzywinski et al. 2009; Meng et al. 2019). 

Phylogenetic analysis 
Sixteen published Acropora genomes with structural genome an-
notations along with two Montipora species, Montipora capitata 
and Montipora efflorescens; two Pocilloporids, P. damicornis and S. 
pistillata; and three anemones, N. vectensis, A. tenebrosa, and 
Exaiptasia diaphana were downloaded from NCBI (Table 1). 
Protein sequences for all annotated genes were extracted and 
clustered into orthogroups derived from a single gene in the last 
common ancestor of the group using ORTHOFINDER (Emms and 
Kelly 2019). Orthogroups were used to infer rooted gene and spe-
cies trees to develop a phylogenetic hypothesis for the group 
(Emms and Kelly 2017, 2018). Specifically, we used the STAG 
(Emms and Kelly 2018) algorithm to infer the species tree from 
7,110 multicopy gene trees which had all species present, each 
created using DendroBLAST (Kelly and Maini 2013), this species 
tree was then rooted using the STRIDE algorithm (Emms and 
Kelly 2017). To infer divergence times, we time-calibrated the spe-
cies tree using least-squares dating and 1,000 bootstraps to esti-
mate divergence time confidence intervals (To et al. 2016). 
Ancestral dates were gathered from the Fossilworks database 
(Supplementary Table 2; Behrensmeyer and Turner 2013). 

Comparative genomics 
Structural gene annotations for all species included in the phylo-
genetic hypothesis were functionally annotated using BLAST 
(Altschul et al. 1990; Camacho et al. 2009) against the Swiss-Prot 
curated portion of the UniProt database (The UniProt 
Consortium 2023). To identify KEGG orthologs for all orthogroups, 
we matched KEGG gene annotations to orthogroups across  
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species and found the consensus KEGG ortholog across all species 
in which the orthogroup was found. KEGG ortholog membership 
within KEGG pathways was identified using KEGGREST 
(Tenenbaum and Volkening 2023). 

We used a logistic regression model to test if there are differ-
ences in the percentage of orthogroups with KEGG annotations 
across taxa. Post-hoc tests were used to compare the rate of anno-
tation in A. cervicornis to other Acropora sp. and make pairwise 
comparisons between genera. To identify systematic differences 
in the distribution of genes in pathways within the Acropora, we 
used χ2 tests followed by a post-hoc analysis with FDR correction 
to identify the species and KEGG pathways with significantly more 
or less gene copies (i.e. orthogroups) than would be expected com-
pared to the other Acropora (Beasley and Schumacker 1995;  
Benjamini and Hochberg 1995). 

The time-calibrated phylogeny along with the number of genes 
found within orthogroups for each species was used to estimate 
the rate of gene family evolution across the phylogeny using 
CAFE5 (Hahn et al. 2005; Mendes et al. 2020) and identify KEGG 
orthologs which exhibit significant expansions/contractions at 
each node of the phylogeny. In the CAFE5 analysis we assumed a 
single rate of evolution across all gene families using the error 
rate estimating model and Poisson prior distribution (De Bie et 
al. 2006; Han et al. 2013). We then performed an overrepresenta-
tion analysis using Fisher’s exact test to determine if any path-
ways in A. cervicornis showed significant expansions/ 
contractions. All statistical analyses were performed using 
R v4.2.1 (R Core Team 2022). 

Results and discussion 
Genome/transcriptome assembly and annotation 
Nanopore sequencing resulted in ∼6.6 million reads containing 
15.5 Gb with an N50 of 5,072 bp with 3.3 million high-quality reads 
after filtering used in the initial long-read assembly containing 
13.3 Gb of DNA with an N50 of 6,078 bp and a polishing set of 4.5 
million reads containing 13.3 Gb of DNA with an N50 of 

5,269 bp. 92 million paired-end Illumina reads (totally 40 Gb) 
were retained after filtering and decontamination for x polishing. 
mRNA sequencing from 86 corals totaled 1.4 billion single-end 
reads and 174 Gb of mRNA sequencing data for gene annotation. 

Using the filtered paired-end short-read sequences, we esti-
mated the genome size of A. cervicornis to be ∼318 Mb, somewhat 
smaller than the Pacific Acroporids (384–475 Mb; Shinzato et al. 
2011, 2021; Ying et al. 2019; Fuller et al. 2020), and obtained 
∼42× genomic coverage of the long-read nanopore sequences for 
the genomic assembly. The initial genome assembly measured 
328 Mb with 3,014 contigs (N50 = 0.94 Mb; L50 = 99) with the long-
est contig being 4.9 Mb and a BUSCO completeness of 92.8% (1.2% 
duplicated, 3.7% fragmented). After genomic post-processing, pol-
ishing, and scaffolding, the final genome assembly measured 
307 Mb (96.5% the estimated genome size, Table 2) with 398 scaf-
folded contigs (N50 = 2.8 Mb; L50 = 35) with the longest scaffold 
measuring 8.3 Mb and a BUSCO completeness of 92.4% (0.4% du-
plicated, 3.6% fragmented, Fig. 1). The pooled transcriptome con-
tained 374,749 transcripts with a total N50 of 3,659 and longest 
isoform N50 of 1,483 with a BUSCO completeness of 93.4% (78% 
duplicated, 3.5% fragmented). The high degree of transcriptome 

Table 1. National Center for Biotechnology Information accession numbers and citations for coral genomes with structural gene 
annotations used to build phylogeny and for comparative genomic analysis. 

Species Genome size (Mb) Number of genes Accession number Citation  

Acropora acuminata  394.7 26,151 GCA_014633975 Shinzato et al. (2021) 
Acropora awi  428.8 26,801 GCA_014634005 Shinzato et al. (2021) 
Acropora cervicornis  308 28,059 GCA_032359415  (This Study) 
Acropora cytherea  426.3 27,327 GCA_014634045 Shinzato et al. (2021) 
Acropora digitifera  415.8 25,278 GCA_014634065 Shinzato et al. (2021) 
Acropora echinata  401.5 26,170 GCA_014634105 Shinzato et al. (2021) 
Acropora florida  442.8 27,573 GCA_014634605 Shinzato et al. (2021) 
Acropora gemmifera  401 26,269 GCA_014634125 Shinzato et al. (2021) 
Acropora hyacinthus  447.2 27,215 GCA_014634145 Shinzato et al. (2021) 
Acropora intermedia  416.9 26,982 GCA_014634585 Shinzato et al. (2021) 
Acropora microphthalma  383.9 26,384 GCA_014634165 Shinzato et al. (2021) 
Acropora millepora  475.4 41,860 GCA_013753865 Fuller et al. (2020) 
Acropora muricata  420.7 27,409 GCA_014634545 Shinzato et al. (2021) 
Acropora nasuta  416.4 27,379 GCA_014634205 Shinzato et al. (2021) 
Acropora selago  392.9 27,036 GCA_014634525 Shinzato et al. (2021) 
Acropora tenuis  403.1 27,236 GCA_014633955 Shinzato et al. (2021) 
Acropora yongei  438 27,452 GCA_014634225 Shinzato et al. (2021) 
Montipora cactus  652.7 29,158 GCA_014634245 Shinzato et al. (2021) 
Montipora efflorescens  643.3 29,424 GCA_014634505 Shinzato et al. (2021) 
Nematostella vectensis  356.6 34,311 GCF_000209225 Putnam et al. (2007) 
Pocillopora damicornis  234.3 25,183 GCF_003704095 Cunning et al. (2018) 
Stylophora pistillata  397.6 33,252 GCF_002571385 Voolstra et al. (2017) 
Actinia tenebrosa  238.2 27,037 GCF_009602425 Surm et al. (2019) 
Exaiptasia diaphana  256.1 27,753 GCF_001417965 Baumgarten et al. (2015)  

Table 2. A. cervicornis assembly statistics. 

Cumulative scaffold length (bp) 307.4 
Number of scaffolds 398 
Number of contigs 415 
G + C content (%) 38.95 
Number of Ns/100 kbp 37.23 
Largest scaffold (Mb) 8.337 
Scaffold N50 (Mb) 2.8 
Scaffold L50 35 
Largest contig (Mb) 8.337 
Contig N50 (Mb) 2.7 
Contig L50 (Mb) 36 
BUSCO complete single-copy 878 
BUSCO complete multicopy 4 
BUSCO fragmented 34 
BUSCO missing 38   
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duplication in the BUSCO value is likely due to the pooling of 
individuals to create the transcriptome. Similar to other 
Acropora genomes (Shinzato et al. 2021), A. cervicornis contained 
39% interspersed repeats (Supplementary Table 3) with the most 
common identifiable class of repeat being short interspersed nu-
clear elements, though the plurality (17%) of repeats in the gen-
ome were unable to be classified and may be taxon specific 
(Shinzato et al. 2021). A. cervicornis had 28,059 validated genes 
(Table 3), intermediate among other Acroporids (25,278–41,860;  
Shinzato et al. 2011; Ying et al. 2019; Fuller et al. 2020; Shinzato 
et al. 2021), with 53% having a Swiss-Prot annotation at an 
e-value < 10−6 and a BUSCO completeness of 81.6% (2.8% dupli-
cated, 10% fragmented). 

Mitochondrial genome 
The A. cervicornis mitochondrial genome was assembled into a sin-
gle circular structure containing 18,259 bp, 13 protein-coding 
genes, two tRNA genes (tRNA-Met and tRNA-Trp), and two rRNA 
genes (16 and 12 s; Fig. 2, GenBank accession number: 
OQ772303). Like all Acropora, the A. cervicornis mitochondrial gen-
ome has a particular dearth of tRNA coding sequences when com-
pared to other metazoans, likely due to this diversification 
occurring after the split between cnidarians and metazoans (van 
Oppen et al. 1999; van Oppen, Catmull, et al. 2002; Liu et al. 2015;  
Tian and Niu 2017; Colin et al. 2021). The gene order found in A. cer-
vicornis is the same as that found in other Acroporids, including 
ND5 being split into two portions with a large intron containing 
all genes except the two tRNA coding genes, the large ribosomal 

subunit rRNA, ATP8, and COI (Figure Y; van Oppen, Catmull, 
et al. 2002; Liu et al. 2015; Zhang et al. 2016; Colin et al. 2021). 

Comparative genomics 
The 28,059 genes found in A. cervicornis belong to 15,191 distinct 
orthogroups of which 54.4% had a KEGG annotation. The percent 
of orthogroups with KEGG annotations varied significantly by spe-
cies (χ2(23) = 595.8, P < 0.0001) due primarily to differences between 
genera (Acropora vs Montipora, Z = 12.9, P < 0.0001) and higher-order 
taxonomic comparisons outside of the Acropora (Acropora vs out-
groups, Z = −17.6, P < 0.0001) rather than within Acropora which all 
show a similar degree of annotation (A. cervicornis vs other 
Acropora, Z = −0.87, P = 0.38). The number of orthogroups per KEGG 
pathway were similar for all Acropora sp. (χ2(4,976) = 478.1, P = 1) 

Fig. 1. Genome snail plot showing genome contiguity and completeness statistics. For an interactive version of the figure see: https://jdselwyn.github.io/ 
assembly-stats/. Created using Challis (2017).  

Table 3. A. cervicornis annotation statistics. 

Number of genes 28,059 
Cumulative length of CDSs (bp) 36,143,406 
Median gene length (bp) 4,072 
Median CDS length (bp) 119 
Median exon length (bp) 124 
Median intron length (bp) 569 
Number of intronless genes 4,591 
Median number of exons per gene 4 
Median number of exons per multiexon gene 4 
BUSCO complete single-copy 752 
BUSCO complete multicopy 27 
BUSCO fragmented 95 
BUSCO missing 80   
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indicating that no Acropora genomes had broad gains or losses 
of genes. Amongst five major KEGG categories, 25.7% of the 
orthogroups were found in pathways involved in organismal sys-
tems and 24.8% were involved in environmental information pro-
cessing. The remaining orthogroups were split between cellular 
processes (18.8%), metabolism-related processes (16.7%), and genet-
ic information processing (14.1%). A. cervicornis possessed 135 unique 
orthogroups, more than the other Acropora species (17–70), possibly 
as a result of the separate evolutionary history in the Caribbean. 
An alternative hypothesis for this discrepancy could be that the ab 
initio gene models for most other Acropora were trained on A. digiti-
fera rather than being trained for each species independently 
(Shinzato et al. 2021). 

Six gene pathways were significantly overrepresented in A. cervi-
cornis among the significantly expanded and contracted KEGG 
orthologs (Supplementary Table 4). Two immune system path-
ways—NOD-like receptor signaling (map04621, OR = 19.7, 
P < 0.001, padj < 0.001) and Neutrophil extracellular trap formation 
(map04613, OR = 16.9, P < 0.001, padj = 0.018)—and the related cel-
lular growth and death pathway Necroptosis (map04217, OR =  
17.6, P < 0.001, padj = 0.018) were significantly overrepresented due 
to one expansion and three contractions in NACHT, LRR, and 
PYD domain-containing proteins, three contractions in histone 
proteins (H2A, H3, and H4), and one expansion in a cation channel 
protein (TRPM7). In corals, NOD-like receptor signaling pathway 
has been found to be an integral part of the innate immune system 
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(Hamada et al. 2013) and histone phosphorylation has been shown 
to be a key response to nutrient stress and regulating the dinofla-
gellate symbionts (Rodriguez-Casariego et al. 2018). 

The second major group of overrepresented pathways are sig-
naling pathways, particularly the calcium signaling pathway 
(map04020, OR = 9.93, P < 0.001, padj = 0.025) and the neuroactive 
ligand–receptor interaction (map04080, OR = 39.8, P < 0.001, 
padj < 0.001). While the immune-related pathways were predomin-
antly gene contractions in these pathways, all KEGG orthologs 
showed expansions (Supplementary Table 4). The calcium signal-
ing and neuroactive ligand–receptor pathways have been found to 
be important in regulation reproduction (Hilton et al. 2012;  
Rosenberg et al. 2017), nematocyst regulation (Russell and 
Watson 1995), and biomineralization (Reyes-Bermudez et al. 
2009). Further, these pathways appear to be differentially ex-
pressed between the growth tips and bases in the Caribbean 
Acropora (Hemond et al. 2014). 

The final KEGG pathway overrepresented among the rapidly 
evolving KEGG orthologs is the Taurine and hypotaurine metabol-
ism pathway (map00430, OR = 91.6, P < 0.001, padj = 0.04). This 
pathway was driven by the loss of a single KEGG orthogroup, cyst-
eine dioxygenase (−2, K00456). Unlike other scleractinian corals, 
Indo-Pacific Acropora lack the cystathionine beta-synthase gene 
involved in cysteine biosynthesis (Shinzato et al. 2011) suggesting 
that Acroporid corals must rely on their algal symbionts to supply 
this vital amino acid (Shinzato et al. 2014). However, an alterna-
tive cysteine biosynthesis pathway has recently been discovered 
in Acropora loripes suggesting Acropora corals can natively 

synthesize cysteine through this alternate pathway (Salazar et 
al. 2022). Similar to the other studied Acropora, A. cervicornis lacks 
genes coding for cystathionine beta-synthase but does possess the 
genes required for the alternate cysteine biosynthesis pathway 
(Salazar et al. 2022). The loss of cysteine dioxygenase in A. cervicor-
nis may suggest that the alternative pathway does not fully com-
pensate the biosynthesis of cysteine resulting in a lack of excess 
cysteine needing to be metabolized. 

Phylogeny 
A. cervicornis is estimated to have diverged from the other Acropora 
41 million years ago (mya) (35–47, 95% CI) during the Paleogene, 
approximately coinciding with the initial closure of the Tethys 
Sea (van Oppen et al. 2001; Wallace and Portell 2022). The addition 
of A. cervicornis as a Caribbean Acropora to the published Acropora 
phylogenomic tree (Shinzato et al. 2021) suggests that the Acropora 
radiation in the Indo-Pacific occurred in at least two stages with an 
initial split occurring between 58 and 68 mya resulting in clades I 
and II prior to the divergence of the Caribbean and Indo-Pacific 
Acropora, followed by a second set of radiations of the 
Indo-Pacific Acropora 35–47 mya and resulting in the more spe-
ciose clades III and IV (Fig. 3). Low bipartition support values with-
in Acropora could result from the relatively rapid radiation within 
Acropora, incomplete lineage sorting and/or introgressive hybrid-
ization (Vollmer and Palumbi 2002; van Oppen, Willis, et al. 
2002; Minh et al. 2020). The Acroporids (Montipora and Acropora) 
likely diverged from the Pocilloporids (S. pistillata and P. damicornis) 
during the Triassic period 220 mya (188–225, 95% CI) with Acropora 

Fig. 3. Species phylogeny based on identified orthogroups. Node color indicates the proportion of single-locus gene trees supporting each bipartition (i.e. 
gene concordance factor, a more stringent metric of node support than bootstrap support, Emms and Kelly 2018; Minh et al. 2020). Red bars at each node 
indicate the 95% confidence interval of the estimated time of divergence marked in geologic periods on the x axis. Green/red node numbers indicate the 
number of KEGG orthologs which significantly expanded/contracted at each divergence point. Clade groupings from Shizato et al. (2021).   
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and Montipora diverging during the early Cretaceous 136 mya 
(116–136, 95% CI). 

Conclusion 
In summary, this study presents the first fully annotated genome of 
the endangered Caribbean staghorn coral, A. cervicornis. Comparative 
genomics highlights distinctive genetic traits, including immune 
pathway contractions and signaling pathway expansions, suggesting 
further research into the species response to environmental stres-
sors, particularly White Band Disease. Phylogenetic analysis places 
A. cervicornis within the broader Acropora genus, dating its divergence 
to around 41 mya, aligning previous morphological findings and sup-
porting the hypothesis of divergence coincident with the closure of 
the western Tethys Sea. This annotated genome serves as a valuable 
resource for future research, facilitating conservation and restoration 
efforts for Caribbean coral reefs, and deepening our understanding of 
speciation and adaptation within Acropora. 

Data availability 
Genome assembly and associated Nanopore and short-read DNA 
sequencing data can be accessed from NCBI BioProject: 
PRJNA948411 with the mitochondrial genome assembly access-
ible at NCBI GenBank: OQ772303. RNA sequencing data used for 
annotation can be accessed from NCBI BioProject: PRJNA949884. 
Genome assembly and annotation pipeline code available from 
GitHub: https://github.com/VollmerLab/Acerv_Genome. 

Supplemental material available at G3 online. 
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